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Abstract 

Forest is one of the natural resources that need to be preserved because it has vital functions for humans both 

ecologically and economically. In this study, a mathematical model of forestry dynamics was developed by 

dividing the forest area, indigenous people, non-indigenous people, population pressure and economic incentives. 

The model was analyzed by dynamic system theory, the existence of equilibrium points and their stability were 

determined. Using the second Lyapunov method, global stability was also determined.  In that forestry model, 

logging and tourism factors were added which affect the dynamics of forest biomass. The Pontryagin maximum 

principle was used to obtain optimal conditions from the model. Numerical simulation shows that the use of forests 

by logging and tourism, reduces the amount of forest biomass, but the forest remains sustainable. Utilization of 

forests bycontrols will maximize the benefits of logging and tourism in the associated forests. 
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1. Introduction 

Forests are one of the most important parts of the ecosystem on Earth. Forests play a large role in 

preventing soil erosion, global warming, landslide, flooding and so on. Unfortunately, in Indonesia, the 

large clearing of land for oil palm plantations, mining, and forest over the land have caused deforestation 

in Indonesia. (Austin et al., 2019). Human needs against forest resources tend to exploit primarily by 

non-indigenous peoples (Reyes-Garcia et al., 2012). Indigenous peoples are the first inhabitants to settle 

an area. They are usually called indigenous peoples when they maintain a tradition of conformity with 

the area. Indigenous peoples tend to keep their area from excessive exploitation (Corrigan et al., 2018; 

Mulyoutami et al., 2009; Wadley & Coffer, 2004). It is important to involve the indigenous peoples in 

the effort of forest Preservation (Fatem et al., 2018; Clay et al., 2000; Sahide et al., 2016). The tradition 

also attracts foreign residents or foreign communities because they reliance with nature. So, it attracts 

tourists to visit the area. It can be an economic potential within the region. 

Researchers have used mathematical models about the dynamics of forest resources. In 1989, Shukla 

et al. (1989) proposed a mathematical model on forest resources. Agarwal et al. (2010) and Chaundhary 

et al. (2015) examined the influence of industrial pressure on the lowering of forest resources. Mirsa et 
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al. (2014) and Lata et al. (2018) showed that population pressure affects forest biomass. Mirsa & Lata 

(2013) also examined the technological efforts of the vision of forest biomass. In his research Dhar 

(2008), the mathematical model for forest resources was divided into two. While the influence of tourism 

on the Environment, Lacitignola (2007) stated that tourism affects forest quality. 
From the above studies, models on the influence of population distribution, indigenous people and 

non-indigenous people, as well as the influence of forest utilization in the form of logging and tourism, 
have not been studied. So in this research will be discussed on the model of forestry mathematics that is 
managed by the indigenous peoples and non-indigenous peoples to its utilization in the form of logging 
and tourism. 

2. Materials and Methods 

 

Figure 1: Forest Model Schematic Diagram 

The main model used in this research is the forestry model with population pressure developed by 

Misra et al. (2014). The model in Misra et al. (2014) has been extended in Pratama et al. (2020) by 

dividing the utilization of the forest by two different level of exploitation. Pratama et al. (2020) showed 

the dynamics of the modified model without considering optimal exploitation. In this paper we add 

optimal control in the level of exploitation into the original model of Misra et al. (2014) as follows. In 

this article the original model of Misra et al (2014) is developed by dividing the human population into 

two parts, namely indigenous peoples (𝑁2) and non-indigenous peoples (𝑁1). The forest is also divided 

into two parts, a forest managed by non-indigenous peoples (𝐵1) and forests managed by the indigenous 

peoples(𝐵2). Both population and forest grow in the logistics growth. Indigenous peoples as well as non-

indigenous peoples each make use of forests for their lives. However, what distinguishes is the non-

indigenous population giving population pressure. Population pressure (𝑃) is the effect of the existence 

of non-indigenous peoples who manage forests unsustainably. Thereby reducing carrying capacity of the 

forest they manage. To reduce population pressure, economic incentives (𝐸) are given. 

This Model has been represented by the schematic diagram in Figure 1 with the parameter description 

displayed in Table 1. Differential equations for the forestry model are as follows: 

 

𝑑𝐵1

𝑑𝑡
= 𝑠𝐵1 (1 −

𝐵1

𝐿1
) − 𝛼1𝐵1𝑁1 − 𝜆2𝐵1

2𝑃 

𝑑𝐵2

𝑑𝑡
= 𝑠𝐵2 (1 −

𝐵2

𝐿2
) − 𝛼2𝐵2𝑁2 

𝑑𝑁1

𝑑𝑡
= 𝑟𝑁1 (1 −

𝑁1

𝐾1
) + 𝜋1𝛼1𝐵1𝑁1 + 𝛾𝑁1𝑁2 
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𝑑𝑁2

𝑑𝑡
= 𝑟𝑁2 (1 −

𝑁2

𝐾2
) + 𝜋2𝛼2𝐵2𝑁2 − 𝛾𝑁1𝑁2 

𝑑𝑃

𝑑𝑡
= 𝜆𝑁1 − 𝜆0𝑃 − 𝜆1𝑃𝐸 

𝑑𝐸

𝑑𝑡
= 𝜓𝑃 − 𝜓0𝐸 

(1) 

By defining the parameters in table 1 below: 

 

Table 1: Model parameters 

Parameter Description Parameter Description 

 𝑠 Growth rate of forest biomass 𝑟 Population growth rate 

 𝐿1 Carrying Capacity forest B1 𝐾1 Carrying capacity of population N1 

 𝐿2 Carrying capacity forest B2  𝐾2 Carrying capacity of population N2 

 𝛼1 
Rate of reduction B1 due to direct 

utilization by population N1 
𝛼2 

Rate of reduction due to direct 

utilization by population B1N1 

𝜋1 
Rate of addition N1 due to direct 

utilization of forest biomassB1 
𝜋2 

Rate of addition N2 due to direct 

utilization of forest biomass B2 

𝜆 Growth rate P 𝜆0 Natural reduction rateP 

 𝜆2 
Carrying capacity B1 reduction rate 

due to P 
𝜆1 Rate reduction P due E 

𝛾 Urbanisation rate 𝜓 Growth rate E 

𝜓0 Natural reduction rate E   

 

Lemma 1 : Suppose the initial value of the system (1) is: 𝐵1(0) ≥ 0, 𝐵2(0) ≥ 0, 𝑁1(0) ≥ 0, 𝑁2(0) ≥
0, 𝑃(0) ≥ 0  𝐸(0) ≥ 0 . Then the solution of the System (1) is in the region 

Ω = {(𝐵1, 𝐵2, 𝑁1, 𝑁2, 𝑃, 𝐸): 0 ≤ 𝐵1 ≤ 𝐿1; 0 ≤ 𝐵2 ≤ 𝐿2; 0 ≤ 𝑁1 ≤ 𝑁𝑚1; 0 ≤ 𝑁2 ≤ 𝑁𝑚2; 0 ≤ 𝑃 ≤

𝜆

𝜆0
𝑁𝑚1; 0 ≤ 𝐸 ≤

𝜆𝜅𝜓

𝜆0𝜓0

𝑁𝑚1} with value 𝑁𝑚1 =
𝐾1

𝑟
(𝑟 + 𝜋1𝛼1𝐿1 + 𝛾𝑁𝑚2) dan 𝑁𝑚2 =

𝐾2

𝑟
(𝑟 + 𝜋2𝛼2𝐿2). 

3. Results and Discussion 

3.1 Steady states and their stability analysis 

 

A fixed point or equilibrium point is obtained when each population growth rate on a system (1) is 

zero value. A condition of equilibrium in which the number of populations does not increase or decrease. 

Meanwhile, a fixed point stability determination can be discovered by entering the value into the 

Jacobian matrix. Then sought the Eigen value of the Jacobian matrix. Here is the fixed point and its 

stability:  

 

Table 2: Types of stability for each fixed point 
Fixed point value Eigen value (Λ) Type of stability 

𝐵1 = 0, 𝐵2 = 0, 𝑁1 = 0 

𝑁2 = 0, 𝑃 = 0, 𝐸 = 0 

Λ1 = −𝜓, Λ2 = −𝜆0, Λ3 = 𝑠 

Λ4 = 𝑠, Λ5 = 𝑟, Λ6 = 𝑟 
Unstable (saddle point) 

𝐵1 = 0, 𝐵2 = 0, 𝑁1 = 0 

𝑁2 = 𝐾2, 𝑃 = 0, 𝐸 = 0 

Λ1 = 𝑠, Λ2 = −𝐾2𝛼2 + 𝑠, 
Λ3 = 𝐾2𝛾 + 𝑟, Λ4 = −𝑟 , 

Λ5 = −𝜆0, Λ6 = −𝜓0 

Unstable (saddle point) 
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𝐵1 = 𝐿1, 𝐵2 = 0, 𝑁1 = 0 

𝑁2 = 0, 𝑃 = 0, 𝐸 = 0 

Λ1 = 𝑠, Λ2 = 𝐿1𝜋1𝛼1 + 𝑟, 
Λ3 = 𝑟, Λ4 = −𝑠 , 

Λ5 = −𝜆0, Λ6 = −𝜓0 

Unstable (saddle point) 

𝐵1 = 𝐿1, 𝐵2 = 0, 𝑁1 = 0 

𝑁2 = 𝐾2, 𝑃 = 0, 𝐸 = 0 

Λ1 = −𝑟, Λ2 = −𝐾2𝛼2 + 𝑠, 
Λ3 = 𝐿1𝜋1𝛼1 + 𝐾2𝛾 + 𝑟, 

Λ4 = −𝑠 , Λ5 = −𝜆0, 
Λ6 = −𝜓0 

Unstable (saddle point) 

𝐵1 = 0, 𝐵2 = 𝐿2, 𝑁1 = 0 

𝑁2 = 0, 𝑃 = 0, 𝐸 = 0 

Λ1 = 𝑠, Λ2 = 𝑟, 
Λ3 = 𝐿2𝜋2𝛼2 + 𝑟, Λ4 = −𝑠 , 

Λ5 = −𝜆0, Λ6 = −𝜓0 

Unstable (saddle point) 

𝐵1 = 𝐿1, 𝐵2 = 𝐿2, 𝑁1 = 0 

𝑁2 = 0, 𝑃 = 0, 𝐸 = 0 

Λ1 = 𝐿1𝜋1𝛼1 + 𝑟, Λ2 = −𝑠, 
Λ3 = 𝐿2𝜋2𝛼2 + 𝑟, Λ4 = −𝑠 , 

Λ5 = −𝜆0, Λ6 = −𝜓0 

Unstable (saddle point) 

𝐵1 = 0, 𝑁1 = 0 

𝐵2 = −
𝐿2𝑟(𝐾2𝛼2 − 𝑠)

𝐾2𝐿2𝜋2𝛼2
2 + 𝑟𝑠

, 

𝑁2 =
𝐾2𝑠(𝐿2𝜋2𝛼2 + 𝑟)

𝐾2𝐿2𝜋2𝛼2
2 + 𝑟𝑠

, 

𝑃 = 0, 𝐸 = 0 

Λ1 = 𝑠, Λ2 = −𝜓0, Λ3 = −𝜆0 

Λ4 = Λ+∗, Λ5 = Λ+∗, Λ6 = Λ−∗ 
Unstable (saddle point) 

𝐵1 = 𝐿1, 𝑁1 = 0 

𝐵2 = −
𝐿2𝑟(𝐾2𝛼2 − 𝑠)

𝐾2𝐿2𝜋2𝛼2
2 + 𝑟𝑠

, 

𝑁2 =
𝐾2𝑠(𝐿2𝜋2𝛼2 + 𝑟)

𝐾2𝐿2𝜋2𝛼2
2 + 𝑟𝑠

, 

𝑃 = 0, 𝐸 = 0 

Λ1 = −𝑠, Λ2 = −𝜓0, Λ3 = −𝜆0 

Λ4 = Λ+∗, Λ5 = Λ−∗, Λ6 = Λ−∗ 
Unstable (saddle point) 

𝐵1 = 0, 𝐵2 = 0, 𝑁1 = 𝐾1 

𝑁2 = 0, 𝑃 = 𝑃1, 𝐸 = 𝐸1 

Λ1 = 𝑠 − 𝛼1𝐾1, Λ2 = 𝑠, Λ3 = 𝑟 

Λ4 = 𝜆0, Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 0, 𝐵2 = 𝐿2, 𝑁1 = 𝐾1 

𝑁2 = 0, 𝑃 = 𝑃1, 𝐸 = 𝐸1 

Λ1 = 𝑠 − 𝛼1𝐾1, Λ2 = −𝑠, 
Λ3 = 𝑟 

Λ4 = 𝜆0, Λ5 = Λ−#, Λ6 = Λ−# 

Unstable 

𝐵1 = 0, 𝐵2 = 0, 𝑁1 = 𝑁1
1 

𝑁2 = 𝑁2
1, 𝑃 = 𝑃2, 𝐸 = 𝐸2 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ+∗ 

Λ4 = Λ−∗ Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 0, 𝐵2 = 𝐵2
1 , 𝑁1 = 𝑁1

2 

𝑁2 = 𝑁2
2, 𝑃 = 𝑃3, 𝐸 = 𝐸3 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ+∗ 

Λ4 = Λ−∗ Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 𝐵1
1, 𝐵2 = 0, 𝑁1 = 𝑁1

3 

𝑁2 = 0, 𝑃 = 𝑃4, 𝐸 = 𝐸4 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ+∗ 

Λ4 = Λ+∗ Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 𝐵1
1, 𝐵2 = 𝐿2, 𝑁1 = 𝑁1

3 

𝑁2 = 0, 𝑃 = 𝑃4, 𝐸 = 𝐸4 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ+∗ 

Λ4 = Λ−∗ Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 𝐵1
2 , 𝐵2 = 0, 𝑁1 = 𝑁1

4 

𝑁2 = 𝑁2
3, 𝑃 = 𝑃5, 𝐸 = 𝐸5 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ+∗ 

Λ4 = Λ−∗ Λ5 = Λ−#, Λ6 = Λ−# 
Unstable 

𝐵1 = 𝐵1
∗, 𝐵2 = 𝐵2

∗, 𝑁1 = 𝑁1
∗ 

𝑁2 = 𝑁2
∗, 𝑃 = 𝑃∗, 𝐸 = 𝐸∗ 

Λ1 = Λ−∗, Λ2 = Λ−∗, Λ3 = Λ−∗ 

Λ4 = Λ−∗ Λ5 = Λ−#, Λ6 = Λ−# 
Stable 

 

Table 2 shows that a stable point locally is only at a point 𝐹∗(𝐵1
∗, 𝐵2

∗, 𝑁1
∗, 𝑁2

∗, 𝑃∗, 𝐸∗) While the other 

point is unstable. It will be searched for whether the point 𝐹∗ has global stability. 

 

Theorems 1 The point 𝐹∗(𝐵1
∗, 𝐵2

∗, 𝑁1
∗, 𝑁2

∗, 𝑃∗, 𝐸∗) has global stability if it meets the following equalities: 
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𝜆2
2𝐵1

∗2 < 2 (
𝑠

𝐿1
+ 𝜆2𝑃∗) (

𝜅𝜓(𝜆0 + 𝜆1𝐸∗)

𝜆1𝑃∗ ) 

𝜅𝜓𝜆2

𝜆1𝑃∗
<

2𝑟(𝜆0 + 𝜆1𝐸∗)

𝐾1𝜋1
 

(2) 

3.2 Control Optimal Model 

 

This section is discussed on the forestry model that has been given control. In this article, the control 

variables that are added to the model (1) are described as 𝑀1 and 𝑀2.The control variable 𝑀1 represents 

the logging factor against the forest managed by the non-indigenous population. While the control 

variable 𝑀2 represents the tourism factor of the forest managed by the indigenous peoples. It is assumed 

the logging factor and tourism reduced the amount of biomass from each forest. This reduction rate is 

represented with 𝑞1 and 𝑞2. So the model (1) becomes as follows: 

 𝑑𝐵1

𝑑𝑡
= 𝑠𝐵1 (1 −

𝐵1

𝐿1
) − 𝛼1𝐵1𝑁1 − 𝜆2𝐵1

2𝑃 − 𝑞1𝐵1𝑀1 

𝑑𝐵2

𝑑𝑡
= 𝑠𝐵2 (1 −

𝐵2

𝐿2
) − 𝛼2𝐵2𝑁2 − 𝑞2𝐵2𝑀2 

𝑑𝑁1

𝑑𝑡
= 𝑟𝑁1 (1 −

𝑁1

𝐾1
) + 𝜋1𝛼1𝐵1𝑁1 + 𝛾𝑁1𝑁2 

𝑑𝑁2

𝑑𝑡
= 𝑟𝑁2 (1 −

𝑁2

𝐾2
) + 𝜋2𝛼2𝐵2𝑁2 − 𝛾𝑁1𝑁2 

𝑑𝑃

𝑑𝑡
= 𝜆𝑁1 − 𝜆0𝑃 − 𝜆1𝑃𝐸 

𝑑𝐸

𝑑𝑡
= 𝜓𝑃 − 𝜓0𝐸 

(3) 

The main objective of this optimal control problem is to maximize the following objective functions 

 

𝑀𝑎𝑥 𝐽(𝑀1, 𝑀2) = ∫ 𝑒−𝛿𝑡((𝑝1 − 𝑣1𝑞1𝑀1𝐵1)𝑞1𝑀1𝐵1 + (𝑝2 − 𝑣2𝑞2𝑀2𝐵2)𝑞2𝑀2𝐵2 − 𝑐1𝑀1

𝑡𝑓

0

− 𝑐2𝑀2) 

(4) 

 

where variable 𝑣1 and 𝑣2 are economics factors and 𝛿 is discount rate. 𝑞1, 𝑞2, 𝑐1, 𝑐2 are costs incurred for 

logging, tourism and economic incentives. Then, the  variable control 𝑀1
∗, 𝑀2

∗ will be searched so that 

 

𝐽(𝑀1
∗, 𝑀2

∗) = max
𝑀

{𝐽(𝑀1, 𝑀2)} (5) 

where 

𝑀 = {(𝑀1, 𝑀2): [0, 𝑡𝑓] → [0,1]} (6) 

 

The Hamiltonian equation for this optimal control problem is 

 

𝐻 = 𝑒−𝛿𝑡((𝑝1 − 𝑣1𝑞1𝑀1𝐵1)𝑞1𝑀1𝐵1 + (𝑝2 − 𝑣2𝑞2𝑀2𝐵2)𝑞2𝑀2𝐵2 

−𝑐1𝑀1 − 𝑐2𝑀2) 

+𝜇1 (𝑠𝐵1 (1 −
𝐵1

𝐿1
) − 𝛼1𝐵1𝑁1 − 𝜆2𝐵1

2𝑃 − 𝑞1𝐵1𝑀1) 

+𝜇2 (𝑠𝐵2 (1 −
𝐵2

𝐿2
) − 𝛼2𝐵2𝑁2 − 𝑞2𝐵2𝑀2) 
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+𝜇3 (𝑟𝑁1 (1 −
𝑁1

𝐾1
) + 𝜋1𝛼1𝐵1𝑁1 + 𝛾𝑁1𝑁2) 

+𝜇4 (𝑟𝑁2 (1 −
𝑁2

𝐾2
) + 𝜋2𝛼2𝐵2𝑁2 − 𝛾𝑁1𝑁2) 

+𝜇5(𝜆𝑁1 − 𝜆0𝑃 − 𝜆1𝑃𝐸) + 𝜇6(𝜓𝑃 − 𝜓0𝐸) 

(7) 

where 𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5 and 𝜇6 are adjoin variables for 𝐵1, 𝐵2, 𝑁1, 𝑁2, 𝑃, 𝐸. The differential equation is as 

follows 

 
𝑑𝜇1

𝑑𝑡
= − (𝑠 (1 −

𝐵1

𝐿1
) − 𝛼1𝑁1 − 𝜆2𝐵1𝑃 + 𝐵1 (−

𝑠

𝐿1
− 𝜆2𝑃) − 𝑞1𝑀1) 𝜇1 

−𝑁1𝜋1𝛼1𝜇3 − 𝑒−𝛿𝑡(−𝑀1
2𝑞1

2𝑣1𝐵1 + (−𝐵1𝑀1𝑞1𝑣1 + 𝑝1)𝑞1𝑀1) 

𝑑𝜇2

𝑑𝑡
= − (𝑠 (1 −

𝐵2

𝐿2
) − 𝛼2𝑁2 −

𝐵2𝑠

𝐿2
− 𝑞2𝑀2) 𝜇2 − 𝑁2𝜋2𝛼2𝜇4 

−𝑒−𝛿𝑡(−𝑀2
2𝑞2

2𝑣2𝐵2 + (−𝐵2𝑀2𝑞2𝑣2 + 𝑝2)𝑞2𝑀2) 

𝑑𝜇3

𝑑𝑡
= 𝐵1𝛼1𝜇1 − (𝑟 (1 −

𝑁1

𝐾1
) + 𝜋1𝛼1𝐵1 + 𝛾𝑁2) 𝜇3 +

𝑁1𝑟𝜇3

𝐾1
+ 𝑁2𝛾𝜇4 

−𝜆𝜇5 

𝑑𝜇4

𝑑𝑡
= 𝐵2𝛼2𝜇2 − 𝑁1𝛾𝜇3 − (𝑟 (1 −

𝑁2

𝐾2
) + 𝜋2𝛼2𝐵2 − 𝛾𝑁1) 𝜇4 +

𝑁2𝑟𝜇4

𝐾2
 

𝑑𝜇5

𝑑𝑡
= 𝐵1

2𝜆2𝜇1 − 𝜓𝜇6 − (−𝐸𝜆1 − 𝜆0)𝜇5 

𝑑𝜇6

𝑑𝑡
= 𝜓0𝜇6 + 𝑃𝜆1𝜇5 

(8) 

with transversal conditions 

𝜇𝑖(𝑡𝑓) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … ,6 (9) 

Optimum conditions 
𝜕𝐻

𝜕𝑀1
= −𝑞1𝐵1𝜇1 + 𝑒−𝛿𝑡(−𝐵1

2𝑞1
2𝑣1𝑀1 + (−𝐵1𝑀1𝑞1𝑣1 + 𝑝1)𝑞1𝐵1 − 𝑐1) = 0 

𝜕𝐻

𝜕𝑀2
= −𝑞2𝐵2𝜇2 + 𝑒−𝛿𝑡 (−𝐵2

2𝑞2
2𝑣2𝑀2 + (−𝐵2𝑀2𝑞2𝑣2 + 𝑝2)𝑞2𝐵2 − 𝑐2) = 0 

(10) 

Using the conditions of the control variable (5) and the equation (9), so that the optimal control variable 

is as follows 

𝑀1
∗ = min {1, 𝑚𝑎𝑥 {0,

1

2

𝐵1𝑒−𝛿𝑡𝑝1𝑞1 − 𝑞1𝐵1𝜇1 − 𝑒−𝛿𝑡𝑐1

𝑒−𝛿𝑡𝐵1
2𝑞1

2𝑣1
}} 

𝑀2
∗ = min {1, 𝑚𝑎𝑥 {0,

1

2

(𝐵2𝑒−𝛿𝑡𝑝2𝑞2 − 𝑞2𝐵2𝜇2 − 𝑒−𝛿𝑡𝑐2)

𝑒−𝛿𝑡𝐵2
2𝑞2

2 𝑣2
}} 

(11) 

  

3.3 Numerical Solution 

 

The numeric simulation in this article uses the parameter values and the initial compartment values 

that are presented in Table 3 and table 4. 

 

Table 3: Parameter Values  

Parameter Value Parameter Value 

𝑠 0.6 𝐿1 50 

𝐿2 30 𝛼1 0.0001 
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𝛼2 0.0002 𝜆 0.2 

𝜆0 0.1 𝜆2 0.0002 

𝑟 0.1 𝐾1 100 

𝐾2 60 𝜋1 0.004 

𝜋2 0.001 𝛾 0.0005 

𝜆1 0.01 𝜓 0.1 

𝜓0 0.2 𝑡𝑓 40 

𝛿 0.01 𝑐1 0.05 

𝑐2 0.07 𝑝1 1 

𝑝2 1.5 𝑣1 1.75 

𝑣2 1.45 𝑞1 0.8 

𝑞2 0.2   

 

Table 4: Initial Compartment Values 

Compartment 𝐵1(0) 𝐵2(0) 𝑁1(0) 𝑁2(0) 𝑃(0) 𝐸(0) 

Value 35 25 100 25 40 20 

 

3.3.1 Numerical Simulation for Forestry dynamic Model 

 

In this article, the forestry dynamic model of the system (1) represents the condition that the absence 

of logging and tourism that make a profit. Therefore, the value of the rate of reduction 𝑞1and 𝑞2  equal to 

zero. 

From the parameter value in the table (3.2), the condition for which there is a solution that the all 

variables are not zero value 𝐹∗(𝐵1
∗, 𝐵2

∗, 𝑁1
∗, 𝑁2

∗, 𝑃∗, 𝐸∗) is met and the value of 𝐹∗ : 
𝐵1

∗ = 24.94756656, 𝐵2
∗ = 29.73912543, 𝑁1

∗ = 113.0537073 

𝑁2
∗ = 26.08745651, 𝑃∗ = 57.98638313, 𝐸∗ = 28.99319157 

Using these parameters, The point 𝐹∗ Meet Global stability requirements on theorem 1 thus 𝐹∗ have 

global stability. The Eigenvalues in the Matrix Jacobian at 𝐹∗ are Λ1 = −0.58870, Λ2 = −0.29496 +
0.22129, Λ3 = −0.29496 − 0.22129, Λ4 = −0.10001, Λ5 = −0.05652, Λ6 = −0.59478. All of these 

eigen values have a negative value so that at 𝐹∗has a local steady point. 

By using parameter values in the table 3 and the initial values in table 4 can be formed graphs on 

population dynamics over time. 

 
Figure 2: Population and their forest dynamics 
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Figure 3: Population pressure and economic incentives dynamics 

 

In the figure 2 shows the population dynamics between forest biomass and the population that 

manages the forest. On forest biomass managed by indigenous peoples 𝐵1 have decreased to the value 

𝐵1
∗, that has a difference of value far with its carrying capacity 𝐿1. It is different from 𝐵2. Value 𝐵2 

increase and toward to value 𝐵2
∗ That has a sufficient difference in value close to its carrying capacity, 

namely 𝐿2. This is due to the population pressure 𝑃 which reduces carrying capacity 𝑁1.  
 

  
Figure 4: Dynamical population of 𝐵1 and 𝑃 with value 𝜓 = 0 

 

If there is no growth in economic incentives or value 𝜓 = 0 then the value of 𝑃 will be greater and 

further reduce the carrying capacity of 𝐵1Thus lowering the amount 𝐵1 as in the figure 4. 

 

3.3.2 Numerical Simulation for Forestry dynamic Model with forestry and tourism factor 

Logging and tourism factors were added to the model (1) to model (3). The control variables 𝑀1and 

𝑀2 those that have been specified in the equation (11) are performed a numerical simulation to indicate 

the value of 𝑀1 and 𝑀2 for each time interval with the parameter values in the table 3. 

 

 
Figure 5: Dynamic Variable Control 𝑀1 and 𝑀2 
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Figure 6: Forest Biomass dynamics after the logging and tourism factors were given 

 

The figure 5 shows the value of 𝑀1 and 𝑀2 at any time lapse. Value of 𝑀1 is convergent on 0.09 

while value of 𝑀2 is convergent on 0.012. The figure 6 shows the differences in forest biomass dynamics 

before and after the logging and tourism factors were given. 

4. Conclussion 

Based on the results of the analysis, the forestry model with the distribution of forest areas, indigenous 

peoples, non-indigenous peoples, population pressures and economic incentives provide a single stable 

solution that is when all the fixed point variables on the forestry model have a non-zero value and that 

point has both local and global stability if it meets certain conditions. The optimal control model of the 

forestry model by forest utilization in the form of deforestation in non-indigenous forests and tourism in 

indigenous peoples has optimal solutions. Numerical simulation results on the forestry model with 

optimal control indicate that with the use of forests with logging and tourism, lowering the number of 

forest biomass. However, the forest is still sustainable. Forest utilization according to control will 

maximize the profit of logging and tourism in the related forest. 
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