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Abstract  

The mathematical model has been used to understand many phenomena and natural interactions. Since including many variables 

and parameters, the complex models are not easy to find analytical solutions. In this paper, we analyze one of the family of 

Runge–Kutta method with an expansion of evaluation function. We applied the proposed method to solve ordinary differential 

equations problems and compared it with other well-known Runge-Kutta methods. The computation cost and accuracy for each 

method have been analyzed. 
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1. Introduction  

Differential equations are the mathematical tool that can be used to model problems in various fields of sciences such 
as economics, biology, physics, mathematics, robotic, encryption, circuit (Amelia, 2020; Anggriani 2019; Aldila 
2020; Ndii, 2020; Vaidyanathan et al., 2017; Sambas et al., 2020; Sukono et al., 2020; Sambas et al., 2019; Mobayen 
et al., 2019;). A differential equation is an equation that contains a derivative of a function. Based on the number of 
independent variables, the differential equations are divided into two, namely ordinary differential equations and 
partial differential equations. The combination of several differential equations is called a system of differential 
equations (Atkinson, 2008). 

Numerical methods are also capable of solving a large, non-linear, and very complex system of differential 
equations with known initial conditions. A search using numerical methods produces an approximate value of an 
analytical solution so that the solution contains an error value. Numerical methods can be used to solve differential 
equation problems with the aid of a computer as a calculation tool. One of the numerical methods used to obtain the 
exact value of differential equation problems is Runge Kutta.  

Mathematical models are designed with varying difficulties, relying on the characteristics of the problem. Some 
models require high computational cost for simulation, especially for a complex model. Many numerical methods 
have been developed by researchers for solving nonlinear differential equations. Numerical methods for solving first-
order IVPs often fall into one of two large categories: linear multistep methods, or Runge–Kutta methods (Griffiths, 

2010).  A further division can be realized by dividing methods into those that are explicit and those that are implicit.  
Many researchers analyzed various Runge-Kutta methods an proposed some modifications. Goeken (2000) 

developed a class of Runge-Kutta method with higher derivatives approximations for the 3rd and 4th-order method. 
Wu (2003) proposed a new family of Runge-Kutta formula with reduced evaluations of function. Phohomsiri and 
Udwadia (2004) proposed the Accelerated Runge-Kutta using two functions evaluation per step.  Gadisa (2017) have 
compared the convergence and stability of the Runge-Kutta method with the high order Taylor method. Other 
researchers have implemented Runge-Kutta 6th order method to solve the initial value problem and partial differential 
equations model (Al-Shimmary, 2017; Sun 2017). The implicit form of the Runge-Kutta 6th order function and its 
application to ordinary differential equations problem has been investigated by Ghawadri (2019) and Huang (2019). 
In this study, we discuss a new family of Runge-Kutta method, which includes the derivation of its formulation and 
application in computer programming, as well as obtaining the results of solutions given by each Runge Kutta 
formulation. Apart from this. each method is then compared in terms of error rate, speed, and computational 
efficiency. We apply the proposed Runge-Kutta formulation for solving non-linear differential equations problem. We 
also compared the proposed method with other Runge-Kutta family. 

https://ijqrm.rescollacomm.com/
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2. Methodology 

2.1. Explicit Runge-Kutta methods 

The Runge–Kutta method can lead to a large family of methods that have close structure. The following are some of 

the basic properties used in constructing the formula for the Runge-Kutta Method. 

 

Definition 1. 

The generalization of the Runge-Kutta method is given by 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑ 𝑏𝑖𝑘𝑖

𝑠

𝑖=1

, 
(1) 

where  

𝑘𝑖 = 𝑓 (𝑦𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑗𝑘𝑗

𝑖−1

𝑗

) , 𝑖 = 1,2, … , 𝑠, 

with assumption that 

𝑐𝑖 = ∑ 𝑎𝑖𝑗
𝑠
𝑗=1 ,  and  ∑ 𝑏𝑖

𝑠
𝑖=1 = 1 

 

To derived it explicitly, we needs to find the integer 𝑠, and the coefficients 𝑎𝑖𝑗 (for 1 ≤ j < i ≤ s), bi (for i = 1, 2, ..., 

s) and ci (for i = 2, 3, ..., s).  

 

0      

𝑐2 𝑎21     

𝑐3 𝑎31 𝑎32    

⋮ ⋮  ⋱   

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 … 𝑎𝑠,𝑠−1  

 𝑏1 𝑏2  𝑏𝑠−1 𝑏𝑠 
 

Using Taylor series expansion, it can be derived that the Runge–Kutta formulation is consistent if and only if  

 

∑ 𝑏𝑗

𝑠

𝑗=1

= 1. 

 

(2) 

2.2. Extended Runge–Kutta Method 

Previous research has been done to improve the accuracy of the Runge-Kutta method. Among others are improving 

the number of terms in Taylor series expansion. One of the approaches is done by Goeken (2008), with adding a term 

to the evaluation function using higher derivatives and presented new third and fourth-order numerical methods. 

Technically, the term 𝑓′ is added in 𝑓. This leads to a new family of Runge–Kutta formulation as given in definition 

2. 

 

Definition 2. 

The generalization of the Extended Runge-Kutta method is stated by 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑ 𝑏𝑖𝑘𝑖

𝑠

𝑖=1

+ ℎ2 ∑ 𝑐𝑖𝑙𝑖

𝑠

𝑖=1

, 

 

(3) 

where  

𝑘𝑖 = 𝑓 (𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑠𝑘𝑗

𝑖−1

𝑗=1

) , 𝑙𝑖 = 𝑓′ (𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑠𝑙𝑗

𝑖−1

𝑗=1

) , 𝑖 = 1,2, … 𝑠. 

 

https://en.wikipedia.org/wiki/Taylor_series
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It can be shown, with 𝑐𝑖 = 0 (𝑖 = 1,2, … 𝑠) in (3) this generalization form reduce to classical Runge-Kutta (1). 

Moreover if 𝑏𝑖 = 𝑐𝑖, then we will get two-step Runge-Kutta methods, which can be called ‘derivative-free’ extended 

Runge-Kutta methods. 

As in Runge-Kutta, equation (3) represents the main function of Runge-Kutta while 𝑘𝑖 and 𝑙𝑖 are evaluation 

function. In this paper, we use the sixth order Extended Runge-Kutta and Butcher table to determine the coefficient 

value of the formulation.  

3. Results and Discussion 

3.1. Formulation of Novel Runge-Kutta Methods  

In this section, we formulate proposed sixth-order Runge-Kutta Methods with extended iteration function. First, 

using definition 2 we have extended sixth-order Runge-Kutta 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑ 𝑏𝑖𝑘𝑖

6

𝑖=1

+ ℎ2 ∑ 𝑐𝑖𝑙𝑖

6

𝑖=1

, 
(4) 

 

where  

𝑘𝑖 = 𝑓(𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑠𝑘𝑗
𝑖−1
𝑗=1 ), 𝑙𝑖 = 𝑓′(𝑦𝑛 + ℎ ∑ 𝑎𝑖𝑠𝑙𝑗

𝑖−1
𝑗=1 ), 𝑖 = 1,2, … 6. 

 

To get the coefficients in equation (3) can be done by simplifying 𝑘𝑖 and 𝑙𝑖 with the Taylor series. The results 

obtained, then give a value to one of the coefficients to get a simple evaluation function. The table Butcher for the 

formulation is shown in Table 1. 

 
Table 1. Table Butcher for Extended 6th Order Runge-Kutta 

𝑐𝑖  

 
 

 

Satisfying that ∑ 𝑏𝑖 = 1, the values in Table 1. are substituted to equation (4) to obtain the Extended 6th order 

Runge-Kutta solution. 

 

3.2 Numerical Simulation  

In this chapter, we will show the application of the extended 6th order Runge-Kutta method for solving examples of 

dynamic models. We use a simple logistic growth model and Lotka-Volterra equation system on a simple interaction 

of two populations (prey predatory model). Using the formulation that has been derived, we compute the solution of 

both models by using the Maple 15 program. The parameters used are hypothetical, for simulation purposes. 
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3.2.1 Application for solving Logistic Growth Model 

Our first example concerns the simple scalar ODE problem 

 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) 

 

(5) 

where 𝑁0, 𝑟, 𝐾 > 0 are known constants. This is a common model for population dynamics in ecology where 𝑁 

represents the number of individuals, 𝑟 the initial growth rate, 𝐾 is the maximum number of individuals that is 

allowed by the environment (the so-called carrying capacity of the environment). 

 
Table 2. Parameter’s description and value for Model 1 

 

Parameter Description Value 

𝑡 Time [0, 25] 

𝑟 Growth rate 0.5 

𝐾 Carrying Capacity 25 

𝑁(0) Initial value 10 

 

Using the separable differential equations method with the parameter value given in Table 2 we can simply get the 

exact solution for Model 1 as follows 

 

𝑁(𝑡) =
50

2 + 3 exp (−
1
2 𝑡)

. 

 

(6) 

The graph of the solution (6) is displayed in Figure 1. Along with applying the derived extended 6th order Runge-

Kutta Method we compared the result of the solution with those from other well-known Runge-Kutta family, that is 

Runge-Kutta Fehlberg and Classical 6th order Runge-Kutta. In Figure 1 it is shown that the solution of each method 

approaches well to the analytical solution. We use 25 numerical points for solving Model 5. 

 

 

 
 

Figure 1. Comparison of each method for solving Model 5 

 

The error of Runge-Kutta Fehlberg (RKF), 6th order Runge-Kutta (RK 6), and Extended 6th order Runge-Kutta 

(XRK6) for some time steps in numerical point is shown in Table 3. We use Root Mean Square Error (RMSE) to 

summarize the performance result for a method, which follows  

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖 − 𝑦𝑖̂)

𝑛
. 

(7) 

Table 4 shows the RMSE for each method when used to solve Model 1. XRK6 method has a smaller error than RKF 

and RK 6. However, in terms of computing cost, the XRK6 requires the largest amount of memory and the longest 

time to complete a simulation. 
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Table 3. Computational result for Model 1 

 

𝑡 
Analytical 

Solution 
Error RKF Error RK 6 

Error 

Extended 

RK6 

0 10    

5 22.26742671 0.00815513 0.00230066 0.00686553 

10 24.74985518 0.00460688 0.00243338 0.00167942 

15 24.97927653 0.00077001 0.00035643 0.00003863 

20 24.99829762 0.00009494 0.00009024 0.00003296 

25 24.99986025 0.00001035 0.00001238 0.00000532 

 

 
Table 4. Comparison of computational cost and results of Runge-Kutta Fehlberg, 

 and Proposed Runge-Kutta for solving Model 1 

 

Method RMSE Memory Used 

(kilobytes) 

Time Cost 

(millisecond) 

Runge-Kutta Fehlberg 4.020308338 × 10−3 49.36 1000 

Runge-Kutta 6th order 3.200666812× 10−3 66.26 3000 

Extended RK 6 1.983032538 × 10−3 116.49 13000 

 

3.2.2. Application for solving Lotka-Volterra Model 
One of the simpler population models that describe prey interactions is the Lotka-Volterra, named after research 

by Alfred J. Lotka (1910) and Vito Vorterra (1926). Model consists of a pair of non-linear differential equations, 

which follows 
𝑑𝑥

𝑑𝑡
= (𝛼 − 𝛽𝑦)𝑥 

𝑑𝑦

𝑑𝑡
= (𝛿𝑥 − 𝛾)𝑦. 

 

(8) 

 

Parameter 𝑎 described the natural growth rate of species 𝑥 (prey). The number of prey is diminished by predation 

𝛽𝑦𝑥. We used hypothetical parameters for simulation shown in Table 5. 

 
Table 5. Parameter’s description and value for Model 1 

 

Parameter Description Value 

𝑡 Time [0, 25] 

𝛼 Growth rate of prey 2/3 

𝛽 Predation rate of prey 4/3 

𝛿 Predation rate of predator 1 

𝛾 Natural death rate of predator 1 

𝑥(𝑡), 𝑦(𝑡) Initial values 0.5,0.1 

 

With the same procedure as in the previous simulation, we compare the solutions of the Lotka-Volterra model 

given by each method. Figure 3 shows the dynamic populations of prey and predator produced by each method. The 

peak points and oscillations of each population can also be captured by method. 

 

 

 

 

 

 

 



               Suryaningrat et al.  / International Journal of Global Operations Research, Vol. 1, No. 4, pp. 160-167, 2020                            165 

 

  
                       (a)                                  (b) 

 
                                                                    (c) 

 

Figure 3. Plot dynamic population solution for Model 2 

 

Table 6. Computational result for Model 2 

 

𝑡 Solution of 𝑥(𝑡)by 

XRK6 

|XRK6 − RKF| |XRK6 − RK6| 

0 0.5 0 0 

5 0.559641 1.04× 10−6 3.30× 10−7 

10 0.918807 1.45× 10−6 2.37× 10−8 

15 0.236079 1.42× 10−6 6.22× 10−7 

20 1.699455 8.54× 10−7 -2.14× 10−7 

25 0.239242 1.36× 10−6 4.05× 10−7 

 

Table 7. Comparison of computational results of Runge-Kutta Fehlberg, 

 and Extended for solving Model 2 

 

Method Memory Used 

(kilobytes) 

Time Cost 

(milliseconds) 

Runge-Kutta Fehlberg 70.02 2000 

Runge-Kutta 6th order 75.53 1000 

Extended RK6 310.18 5000 

 

Table 6 shows the solution produced by Extended able to approach the solution produced by the other two 

methods. Agreed with the previous simulation, the computation cost required for this method is the most for solving 

the Model as shown in Table 7. 

4. Conclussion 

The family Runge-Kutta method for solving differential equation system has been analyzed. We derived basic 

properties of Runge-Kutta and proposed the new family of Runge-Kutta with sixth-order and extended formulation. 

We use the proposed method to solving the simple dynamic models. By comparing the dynamical population of the 

model and the computational cost which is obtained by each method, the proposed Runge-Kutta method quite close to 

the analytical solution. Further the results show the proposed method can be an alternative way for solving ODE 

problems. 
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