Design and Development of Fuzzy Logic Application Tsukamoto Method in Predicting the Number of Covid-19 Positive Cases in West Java

https://doi.org/10.47194/ijgor.v1i2.35

Authors

Keywords:

Fuzzy, Tsukamoto, prediction, Covid-19, West Java

Abstract

The increase in covid-19 positive patients in Indonesia, especially in West Java, is unpredictable, resulting in unpreparedness in dealing with covid-19 cases. People in monitoring and patients under supervision are the category that is breast-positive patients after passing the incubation period for 14 days. Fuzzy logic is one derivative of artificial intelligence that is able to predict a thing.The study used the fuzzy logic of the Tsukamoto method to predict the percentage increase in positive cases of covid-19 with measures performed are fuzzification, rule formation, inference, and defuzzification. The results showed a 4.5% error rate indicating that predicting covid-19 using the fuzzy logic of the Tsukamoto method was successful.

References

Abdillah, L. (2020). Stigma on Positive People COVID-19. Pandemik COVID-19: Antara Persoalan dan Refleksi di Indonesia, Forthcoming. Available at SSRN: https://ssrn.com/abstract=3582624

Ashraf, S., Abdullah, S., & Almagrabi, A. O. (2020). A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19. Soft Computing, 1-17.

Asih, M. S. (2018). Sistem Pendukung Keputusan Fuzzy Mamdani pada Alat Penyiraman Tanaman Otomatis. Query: Journal of Information Systems, 2(1), 1-12.

Bao, L. L. N., Anh, P. V., & Nguyen, D. A. (2019, November). Designing a Controller for Autonomous Underwater Vehicle Using Decoupled Model and Fuzzy Logic. In International Conference on Advanced Engineering Theory and Applications (pp. 42-51). Springer, Cham.

Caraka, A. A., Haryanto, H., Kusumaningrum, D. P., & Astuti, S. (2015). Logika Fuzzy Menggunakan Metode Tsukamoto Untuk Prediksi Perilaku Konsumen di Toko Bangunan. Techno. Com, 14(4), 255-265.

Chen, T. C. T., & Honda, K. (2020). Nonlinear fuzzy collaborative forecasting methods. In Fuzzy Collaborative Forecasting and Clustering (pp. 27-44). Springer, Cham.

Fan, F., & Wang, G. (2020). Fuzzy logic interpretation of quadratic networks. Neurocomputing, 374, 10-21.

Ghosh, S., Das, A., Hembram, T. K., Saha, S., Pradhan, B., & Alamri, A. M. (2020). Impact of COVID-19 induced lockdown on environmental quality in four indian megacities using landsat 8 OLI and TIRS-derived data and mamdani fuzzy logic modelling approach. Sustainability, 12(13), 5464.

Haseeb, A., Tufail, M., Ahmed, S., Rehan, M., Majid, A., & Ahmed, W. (2020). A Fuzzy Logic-Based Gain Scheduling Method for Online Feedback Path Modeling and Neutralization in Active Noise Control Systems. Fluctuation and Noise Letters, 19(01), 2050008.

Hikmawati, Z. S., Arifudin, R., & Alamsyah, A. (2017). Prediction The Number of Dengue Hemorrhagic Fever Patients Using Fuzzy Tsukamoto Method at Public Health Service of Purbalingga. Scientific Journal of Informatics, 4(2), 115-124.

Karnik, N. N., Mendel, J. M., & Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE transactions on Fuzzy Systems, 7(6), 643-658.

Kusumadewi, H. P. (2010). Aplikasi Logika Fuzzy Pendukung Keputusan, Yogyakarta: Graha Ilmu.

Mardani, A., Saraji, M. K., Mishra, A. R., & Rani, P. (2020). A novel extended approach under hesitant fuzzy sets to design a framework for assessing the key challenges of digital health interventions adoption during the COVID-19 outbreak. Applied Soft Computing, 96, 106613.

Minarni, M., & Aldyanto, F. (2016). Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy (Studi Kasus: Roti Malabar Bakery). Jurnal TeknoIf, 4(2), 59-65.

Prakarsa, G., & Nasution, V. M. (2019). Pengembangan Sistem Pendukung Keputusan Menggunakan Metode Tsukamoto. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 414-421.

Ross, T. J. (2004). Fuzzy logic with engineering applications (Vol. 2). New York: John Wiley.

Setiati, S., & Azwar, M. K. (2020). COVID-19 and Indonesia. Acta Medica Indonesiana, 52(1), 84-89.

Singh, S. P., Sharma, A., & Kumar, R. (2020). Design and exploration of load balancers for fog computing using fuzzy logic. Simulation Modelling Practice and Theory, 101, 102017.

Trisnawan, Sanjaya, W. S. M., Sambas, A., Jannah, M., Rahayu, D. S., Mamat, M., & Mohamed, M. A. (2019). Design of 4 Dof Robot ARM Based on Adaptive Neuro-Fuzzy (ANFIS) using Vision in Detecting Color Objects. International Journal of Recent Technology and Engineering, 8(2S7), 224-227. Wiguna, R. Y., & Haryanto, H. (2015). Sistem berbasis aturan menggunakan logika fuzzy tsukamoto untuk prediksi jumlah produksi roti pada CV. gendis bakery. Bachelor Degree. Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang.

Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.

Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh (pp. 775-782).

Published

2020-02-10