Average and Risk-Return Analysis of Cryptocurrencies Using ARMA-GARCH Models
Abstract
Keywords
Full Text:
PDFReferences
Francq, C., & Zakoian, J. M. (2010). GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.
Ghani, I. M., & Rahim, H. A. (2019). Modeling and forecasting of volatility using arma-garch: Case study on malaysia natural rubber prices. In IOP Conference Series: Materials Science and Engineering, vol. 548, pp. 012023.
Gujarati, D. N. (2004). Basic Econometrics (Fourth Edition). New York: Mcgraw-Hill Companies.
Gyamerah, S. A. (2019). Modelling the volatility of Bitcoin returns using GARCH models. Quant Financ Econ, vol. 3, pp 739-753.
Panna, M. (2017). Note on simple and logarithmic return. APSTRACT: applied studies in agribusiness and commerce, vol. 11, pp 127-136.
Rohman, M. N. (2021). Tinjauan Yuridis Normatif Terhadap Regulasi Mata Uang Kripto (Cryptocurrency) di Indonesia. Jurnal Supremasi, vol. 11, pp 1-10.
Tsay, R.S. (2005). Analysis of financial time series, Second Edition, Chicago: John Wiley & Sons, Inc, University of Chicago.
DOI: https://doi.org/10.47194/ijgor.v4i4.214
Article Metrics
Abstract view : 28 timesPDF - 22 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 International Journal of Global Operations Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
Published By:
Iora Journal
Jl. Merkuri Timur VI No. 1, RT. 007, RW. 004, Manjahlega, Rancasari, Kota Bandung, Jawa Barat, INDONESIA Phone: +62 85841953112; +62 811
IJGOR Indexed By:
This work is licensed under a Creative Commons Attribution 4.0 International License.